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Abstract

Adaptation is an increasingly attractive option for addressing economic

damages from climate change, which are subject to significant climate uncer-

tainty. However, uncertainty in climate damages is expected to change over

time as the pace of decline in emissions is observed and geophysical models

are improved. I leverage an ensemble of climate models to quantify the cur-

rent extent and expected path of uncertainty. I incorporate the results into a

real options model to quantify how raising the speed of uncertainty resolution

increases welfare while reducing the necessary level of investment.
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1 Introduction

Though climate change is a real and salient threat, there remains great uncertainty

around its projected impacts. For a start, there is uncertainty regarding the path of

atmospheric greenhouse gas concentrations, as embodied in the various scenarios that

researchers consider. An additional layer of uncertainty comes from our imperfect

understanding of climatic processes, as reflected in variations in the projected impact

of any given scenario across different climate models. Uncertainty in climate impacts

in turn generates uncertainty regarding the optimal level of investment in climate

adaptation. Because investments in adaptation must be made before climate impacts

are realized, this raises the potential for costly mismatches.

Accounting for uncertainty around climate projections is therefore crucial for pol-

icymakers seeking to engage in climate adaptation. Consider the classic example of

a seawall that guards against sea level rise. A proposal to construct a seawall in New

York City that would protect against a sea level rise of 1.8 meters cost 119 billion

dollars(Barnard, 2020). Should the realized sea level rise be greater, the effectiveness

of the seawall will be limited; if instead the sea level rise is far below expectations,

a smaller investment would have been sufficient. Given the magnitude of adaptation

expenditures, billions of dollars can depend on the degree of uncertainty in available

projections.

A good deal of effort goes into measuring the degree of uncertainty associated

with current projections of climate damages. Less frequently noted is the point that

this degree of uncertainty can be expected to change over time. A policymaker con-

sidering the uncertainty around end-of-century climate damages is aware that every

year that passes will provide information about the amount of carbon emitted that

narrows the range of possible carbon scenarios. Climate models may also come to
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greater consensus over time as research continues. Because of this partial resolution

of uncertainty over time, the policymaker today cares not only about the level today

but the expected level of uncertainty at various points in the future.

A rich literature on real options reaching back to Arrow and Fisher (1974) informs

us that decreasing uncertainty may incentivize delays in irreversible investments under

uncertainty. Returning to the example of the seawall, it may be preferable to delay

the investment if the 2100 sea level rise will be known with greater certainty in 10

years. Waiting for the resolution of uncertainty reduces the likelihood of overshooting

the necessary investment, even if it conflicts with the general preference for spreading

out large-scale expenditures over time.

Optimal adaptation therefore requires a tradeoff between consumption smoothing

and the benefits of delaying investment. To formalize this intuition, I adapt a real

options pricing model to link climate uncertainty with climate adaptation investment

decisions. The policymaker in this framework must decide how much to invest in

climate adaptation to prepare for uncertain climate change while anticipating updates

to the variance around expected damages each period. I find a closed-form solution

demonstrating the negative relationship between decreases in uncertainty and optimal

investment levels.

It should be noted that the problem of optimal climate adaptation that I present

in this paper is tractable because it solves for partial equilibria. With a few notable

exceptions, individual nations cannot manage climate risk with mitigation strate-

gies because they cannot unilaterally shift the global path of carbon emissions. In-

vestments in adaptation enable independent reduction of country-specific damages,

avoiding the coordination problem of mitigation. The optimal level of investment

for a nation therefore can be found by taking the scenarios of global path of carbon

emissions as independent of adaptation choices. This also allows for calibration using
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estimated paths of uncertainty.

Generating policy implications for climate adaptation requires quantification of

both the current magnitude of climate uncertainty in economic damages and the the

evolution of this magnitude. To estimate the former, I collect an ensemble of climate

model outputs for standard carbon scenarios from the current phase of the central

climate modeling initiative. Using the damage function from Burke et al. (2015c), I

translate these projections of climate realizations into economic damages. Applying

a standard climate methodology to the resulting distribution of damages yields es-

timates of overall climate uncertainty from its components representing uncertainty

around climate models and carbon scenarios.

To quantify how this climate uncertainty changes over time, I introduce a new

empirical object: the expected uncertainty resolution speed. Defined for each period

as the change in the expected uncertainty from the previous period as a proportion

of the initial degree of uncertainty faced in the present day, this reflects how fast

information is revealed across periods. Because uncertainty resolution speed cannot

be estimated directly for overall climate uncertainty, I construct it using the resolution

speeds of the component uncertainties weighted by their relative contribution to the

initial degree of climate uncertainty.

I estimate the resolution speed of the portion of climate uncertainty attributed

to scenarios of carbon concentrations for each decade between 2020 and 2100, using

probabilistic projections of carbon concentrations by Rennert et al. (2021). Expected

scenario uncertainty in global carbon concentrations decreases nonlinearly, with a

rapid decline in the middle of the century. This uncertainty resolution applies to the

global scale, and can be treated as exogenous by policymakers for individual countries.

To find evidence for the resolution of uncertainty in climate models, I compare its

magnitude in the current phase of the central climate modeling initiative to that of
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the previous phase. I find no systemic evidence of declining climate model uncertainty

over the decade or so between these two phases: while model uncertainty decreases for

many nations, it increases for others. While this is contrary to expectations1, realiza-

tions of model uncertainty may increase even as its expectation decreases. Given the

limited data, this lack of evidence does not refute the intuition that model uncertainty

should resolve over longer time spans with advances in climate science.

To examine the effect of variations in the speed of uncertainty reduction, I instead

establish three illustrative paths of climate uncertainty resolution by combining the

estimated scenario uncertainty resolution speeds with different assumptions for the

path of model uncertainty resolution speeds. I calibrate the framework for these three

paths with estimates for a sample of 121 countries expecting negative climate impacts.

Accounting for the evolution of uncertainty increases expected utility while re-

ducing the necessary level of investment; higher climate uncertainty resolution speeds

amplifies these effects. Taking Vietnam as an example, the optimal level of investment

over the decade spanning 2020-2030 in a scenario where overall climate uncertainty

does not decline over time is 4.4% higher than in a scenario where climate models

are expected to improve steadily over the rest of the century. Results are similar

across the sample of countries; though there is variation, the optimal initial value

with steady improvement is on average 3% above that of no improvement.

This paper builds on an active literature around uncertainty and climate change.

As noted in by Jensen and Traeger (2024), much of the recent work examines uncer-

tainty in the context of social cost of carbon. Lemoine (2021) and van den Bremer

and van der Ploeg (2021) analytically demonstrate the effect of climate uncertainty on

the social cost of carbon, while papers by Gillingham et al. (2018), Cai and Lontzek

(2019), and Dietz et al. (2021) make use of computationally intensive simulations to

1Gillett (2024) suggests the range has decreased for the same scenarios.
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explore the effect of both statistical and climate uncertainty on social cost of carbon,

general equilibrium. Meanwhile, Hong et al. (2023) explicitly addresses climate un-

certainty and learning in optimal adaptation in the context of hurricanes, providing

both a framework and quantification for disaster risks. My work similarly focuses

on the role of evolving climate uncertainty on adaptation decisions, but accounts for

a different dimension of climate damages by focusing on the projected impacts to

macroeconomic productivity.

The framework I establish follows in the vein of a series of papers by Guthrie

(2019, 2021, 2023) on applying Bayesian decision frameworks for adaptation in lo-

calized contexts given changing uncertainty. These works, which offer a real options

model as well as more tractable alternatives for studying optimal investments, share

a framework with two possible scenarios of climate change for which the policymaker

continually updates beliefs. I consider instead the realized value of climate change

as a random walk from the initially projected expected value. This allows the use of

climate model outputs for quantification.

Empirically, I contribute to measurement of climate uncertainty around climate

damages by incorporating advances from climate science. Burke et al. (2015a) high-

lighted the components of climate uncertainty in estimates of climate impacts, but

limitations of climate models at the time prohibited quantification of all of the com-

ponents. Recent advances now allow for a more complete accounting of climate

uncertainty, as demonstrated by Lehner et al. (2020) for temperature projections.

Schwarzwald and Lenssen (2022) applies this methodology to estimate the uncer-

tainty in economic impacts for different years in the United States. I build on their

approach with an expanded sample of models and countries and further apply it to

examine the expected change in end-of-century uncertainty over time.2 I establish

2To be more specific, Schwarzwald and Lenssen (2022) estimate climate uncertainty and its

6



uncertainty resolution speed as an empirical object to capture this evolution, which

in turn allows me to calibrate the framework with different assumptions for model

uncertainty. This calibration yields policy implications for the expected path of un-

certainty resolution speed.

Just as higher uncertainty resolution speed incentivizes delays to investment, re-

ductions to the speed, such as recent climate science funding cuts in the United States,

incentivizes expediting investment. It stands to reason that climate science funding

can serve as a lever for hastening the resolution of model uncertainty, and through it

overall climate uncertainty. The cost of climate research is magnitudes smaller than

that of adaptation; the price of the New York City seawall proposal alone is fifty

times the climate research funding disbursed by the National Institute of Health from

2000 to 2022 (Sovacool et al., 2024). The potential reductions in adaptation invest-

ment (and thus increases in consumption) that would result from faster uncertainty

resolution should be taken seriously in considering future research spending.

The rest of this paper is organized as follows. Section 2 formalizes the intuition

with a toy model, then expands it into a generalized framework. The objects of

interest that arise from the framework, specifically the degrees of uncertainty and

the time paths of uncertainty decline for both emissions and cross-model variation,

are quantified in Section 3. Section 4 calibrates the generalized framework with the

resulting estimates to explore policy implications. Section 5 concludes.

components around damages for periods from 2010 to 2100, whereas I examine how uncertainty
around damages for the representative year 2100 is expected to change as as we move from present
day to the future. I further incorporate probabilities for standard climate scenarios to better capture
scenario uncertainty.
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2 Framework

Higher climate uncertainty incentivizes greater investment in adaptation due to

risk aversion. Because nations have the option to invest over several years, they have

some leeway in adjusting the timing and amount of investment each year to reach an

eventual target level of investment. If uncertainty is expected to decrease over this

time, there is some benefit to delaying investment in the earlier periods. The speed of

the decrease in uncertainty will affect the tradeoff between reduced uncertainty and

the preference for consumption smoothing. I first demonstrate this intuition with a

toy model, which is generalized for calibration.

2.1 Toy Model

Consider a model in which a nation can make adaptation investments in periods

0 and 1 to reduce uncertain damages that will be realized in period 2. The nation

will be given information that decreases the uncertainty around the level of damages

after period 0, before making the investment decision for period 1. This creates some

benefit to delaying investment until period 1, but how much this affects the level

of optimal investment in each period depends on how much uncertainty is resolved

between the two.

More specifically, assume that climate damage realized in period 2 is represented

as the level of income with climate change normalized by the level of income achieved

in period 2 in the absence of climate change. This post-climate change income has

an expected value of w̄dam in period 0. In each period i that follows, climate signal

zi indicating the incremental deviation from this expected value is drawn from an

independent normal distribution. The realized level of income with climate change is
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then

wdam = w̄dam + z1 + z2, where z1 ∼ N(0, σ2
1) and z2 ∼ N(0, σ2

2) (1)

Figure 1 outlines the timeline of this model. In period 0, the nation learns w̄dam, σ
2
1,

and σ2
2 from damage projections. It then earns income w, also normalized by the level

of income achieved in period 2 in the absence of climate change, from which it chooses

to invest a0. It derives utility U(w − a1) from consuming the rest to end the period.

Moving to period 1, the nation observes the first signal z1. It again earns income w,

from which it invests a1 and derives utility U(w− a1). This leads to the final period,

when the second signal z2 is drawn, determining wdam. Damages are reduced by the

cumulative level of investment in adaptation, so the nation consumes wdam + a0 + a1

at the end of the model.

Figure 1: Toy Model Timeline

Period 0

1. Learn w̄dam, σ2
1 , σ

2
2

2. Receive income w

3. Set investment a0

4. Gain U(w − a0)

E0[wdam] = w̄dam

V0[wdam] = σ2
1 + σ2

2

Period 1

1. Learn z1

2. Receive income w

3. Set investment a1

4. Gain U(w − a1)

E1[wdam|z1] = w̄dam + z1

V1[wdam|z1] = σ2
2

Period 2

1. Learn z2

2. Realize wdam = w̄dam + z1 + z2

3. Receive w̄dam + a0 + a1

4. Gain U(wdam + a0 + a1)

E2[wdam|z1, z2] = w̄dam + z1 + z2

V2[wdam|z1, z2] = 0

The expected value of post-climate change income given in period 0 is E0[wdam] =

w̄dam, and climate uncertainty as represented by the variance in post-climate change

income is V0[wdam] = σ2
1 + σ2

2. Once the climate signal z1 is revealed in period 1, the

nation updates the expected value of post-climate change income to be E1[wdam] =

w̄dam+z1; because only z2 remains random, the variance becomes V1[wdam] = σ2
2. How

much of the initial climate uncertainty is resolved between periods 0 and 1 is defined
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as the uncertainty resolution speed S. The larger the S, the faster the resolution of

uncertainty and the greater the benefits to delaying investment until period 1.

S =
V0[wdam]− V1[wdam|z1]

V0[wdam]
=

σ2
1

σ2
1 + σ2

2

(2)

Absent an incentive for investing in both periods, any positive uncertainty reso-

lution speed will lead to no investment being made until period 1. Realistically, this

incentive is provided by the practical preference for incremental investment to smooth

consumption: governments would prefer to spread out spending for large projects over

several years rather than have an outsized impact on a single year’s budget. I incor-

porate this preference using CARA utility with coefficient of absolute risk aversion r,

so that U(c) = −e−rc. The payoff function then becomes

π = −e−r(w−a0) − e−r(w−a1) − e−r(wdam+a0+a1) (3)

The optimal level of investment in each period can then be found through back-

ward iteration. Optimal investment and expected payoffs can then be written in

terms of the uncertainty resolution speed S and the initial level of climate uncer-

tainty V0[wdam] = σ2
1 + σ2

2:

a0 =
1

3

[
w − w̄dam +

r(σ2
1 + σ2

2)

2

[
1− S

2

]]
(4)

a1 =
1

3

[
w − w̄dam +

3z1
2

+
r(σ2

1 + σ2
2)

2

[
1− 5S

4

]]
(5)

E[π] =− 3e
r
3

[
2w+w̄dam+

r(σ2
1+σ2

2)

2 [1−S
2 ]

]
(6)

The derivatives of a1 and E[a2] with respect to S are both negative. This means

that faster uncertainty resolution lowers the optimal level of investment in adapta-
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tion in both periods, holding the initial level of climate uncertainty constant. The

increased benefits to delaying investment reduces the optimal level in the first period,

while the lower variance reduces it in the second period. To illustrate, Figure 2 plots

optimal expected investment and payoffs for increasing values of S. Expected payoffs

increase with the uncertainty resolution speed; that is, faster uncertainty resolution

improves the expected outcome.

Figure 2: Optimal Adaptation and Expected Payoff as S Increases

2.2 Generalized Framework

I generalize this toy model to a framework that better reflects the decision-making

process around climate adaptation. In reality, policymakers receive updated informa-

tion on climate change and make decisions for periods of a few years at a time over

a longer timeline. I extend the number of periods available for investing in climate

adaptation to T and allow income to vary over time. The effectiveness of each unit

of investment in improving post-climate damage outcomes is represented by p.
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The final period of the model, T+1, represents the consequences of climate change.

Much of the synthesis aimed at policymakers highlights projections for the year 2100

as the benchmark value for climate damages. Though this benchmark value applies

to 2100, it should be considered a lower bound for damages for each year that follows.

I therefore separately weight the utility of the post-climate change period by β.

Figure 3: Generalized Framework Timeline

Period 0

1. Learn w̄dam, σ2
1 , ..., σ

2
T+1

2. Receive income w0

3. Set investment a0

4. Gain U(w0 − a0)

E0[wdam|k0] = w̄dam

V0[wdam|k0] =
∑T

i=0 σ
2
i+1

Period t ∈ [1, T ]

1. Learn zt

2. Receive income wt

3. Set investment at

4. Gain U(wt − at)

Et[wdam|kt] = w̄dam +
∑t

i=1 zi

Vt[wdam|kt] =
∑T

i=t σ
2
i+1

Period T + 1

1. Learn zT+1

2. Realize wdam = w̄dam +
∑T+1

i=1 zi

3. Find A =
∑T

i=0 ai
4. Gain β ∗ U(wdam − pA)

ET+1[wdam|kT+1] = w̄dam +
∑T+1

i=1 zi
VT+1[wdam|kT+1] = 0

The timeline of the generalized framework follows a familiar cadence, depicted in

Figure 3. In each period before the final period T + 1, the nation learns information

about the expected post-climate change income, receives income and decides the level

of investment for the period, then gains utility from consuming the remainder. Income

in each period is in terms of the counterfactual level of GDP in the absence of climate

change.

The variance of climate damages in period 0 is V [wdam|k0] =
∑T+1

i=1 σ2
i , which I

label V . From the beginning, the nation is aware that the accumulation of realized

signals will reduce the variance of the raw climate damages faced in future periods.

In each period t, it updates the expected value and variance of wdam given the set of
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information available in that period kt = {ai ∀ i < t, zj ∀ j ≤ t}:

E[wdam|kt] = w̄dam +
t∑

i=1

zi (7)

V [wdam|kt] =
T+1∑
i=t+1

σ2
i (8)

.
Extending the model to T + 1 periods implies a path of uncertainty resolution

speed S = {S0, S1, ..., ST , ST+1} with St reflecting how much uncertainty is resolved

in period t. This can be expressed as the magnitude of the decrease in climate damage

variance given kt as a proportion of the unconditional variance V .

St =
Vt[wdam|kt]− Vt−1[wdam|kt−1]

V0[wdam]
=

σ2
t

V
, (9)

where t ∈ [1, T + 1], V = V0[wdam] =
T∑
i=0

σ2
i+1

Assuming CARA utility, the expected payoff to be maximized by the policymaker

is then

π = −
T∑
i=0

e−r(wi−ai) − βe−r[w̄dam+
∑T+1

i=1 zi+p
∑T

i=0 ai]

The path of optimal investment is the sequence a = [a1, a2, ..., aT ], where invest-

ment for each period maximizes the expected payoff given kt, the information set for

that period. Solving for at = argmax E[π|kt] yields

at =wt +

ln(pβ)
r

− w̄ − p
∑T

i=t wi −
∑t

j=1(zj + paj−1) +
r
2

∑T
k=t

σ2
k+1

1+(T−k)p

1 + (T − t+ 1)p
(10)

For every period t > 1, the analytic solution at can be written as a function of the

previous period’s investment at−1 and speed of uncertainty resolution St−1. Optimal
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investment in the first period, which is deterministic, can be written as a function of

the weighted sum of the uncertainty resolution speeds. That is,

a0 =w0 +

ln(pβ)
r

− w̄ − p
∑T

i=0wi +
V r
2

[
1−

∑T+1
k=1

(T−k+1)p
1+(T−k+1)p

Sk

]
1 + (T + 1)p

(11)

at =at−1 + [wt − wt−1]−
zt

1 + (T − t+ 1)p
− V r

2

St

[1 + (T − t+ 1)p]2
(12)

The optimal level of investment in adaptation technology increases with the vari-

ance of climate damages in period 0, V . However, the sequence of the uncertainty

resolution speed St can vary even as V is held constant. Optimal adaptation in-

vestment will look different for a path in which the uncertainty resolution speed is

initially high before slowing versus a path in which the speed is constant, even when

the total amount of uncertainty resolved is the same. All else held equal, hastening

the resolution of uncertainty leads to an alternate path of optimal adaptation with

lower initial investments in adaptation.

3 Quantifying Climate Uncertainty

Three objects of interest affect the optimal path of adaptation in this framework:

the current expected value of damages w̄dam, the magnitude of climate uncertainty

associated with those damages V , and its uncertainty resolution speed S. To quantify

these three objects, I construct a distribution of economic damage projections from

predictions of how the climate will evolve. I source these predictions from outputs of

Earth Systems Models (ESMs), which are the basis for most detailed projections of

climate change. Each ESM run generates a gridded time series of climate realizations,

such as temperature, given a greenhouse gas trajectory and initial conditions. Varia-

tion in the runs therefore can be attributed to three components: model uncertainty,
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scenario uncertainty, and internal variability.

These components evolve in different ways over time. The first component, model

uncertainty, refers to variability in how well climate models represent true climatic

processes, which decreases with improvements to climate science. The second, sce-

nario uncertainty, reflects uncertainty around future trajectories (that is, scenarios)

of climate change. This will resolve over time as mitigation efforts and past emis-

sions accumulate. The final component of internal variability comes from the chaos

inherent to climate, in which small differences in initial conditions can lead to signif-

icant differences in predicted climate trajectories. This is not expected to evolve in

a directed way. All three influence the current climate uncertainty, but the speed of

uncertainty resolution depends on only the paths of scenario and model uncertainty.

The expected value of damages can be estimated by taking the expected value

across the ensemble of ESM runs after translating each into 2100 income after cli-

mate damages, normalized by the counterfactual 2100 income in the absence of cli-

mate change.3 I quantify the climate uncertainty associated with those damages by

accounting for the magnitude of its components. The uncertainty resolution speed of

this climate uncertainty is not directly observable, but I explore its path through the

two components expected to evolve over time.

3.1 Current Expected Damages and Climate Uncertainty

I begin by constructing the distribution of economic projections necessary to quan-

tify the three components of climate uncertainty, which will also enable estimating

the expected value of damages. The standard method from climate science exploits

variation in model, scenario, and initial conditions, attributing the spread in scenario-

3Uncertainty around damage functions is considered economic rather than climate uncertainty.
Here, I hold the damage function fixed to isolate climate uncertainty.
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average damages to scenario uncertainty, the spread in climate model-average dam-

ages to model uncertainty, and the spread of damages within climate model given

scenario to internal variability.4 That is, for an ensemble of models m that each

generate runs r for scenario s of realization x,

T = E[Vr(x|m, s)]︸ ︷︷ ︸
Internal variability

+E[Vm(Er[x|m, s]|s)]︸ ︷︷ ︸
Model uncertainty

+E[Vs(Er[x|m, s]|m)]︸ ︷︷ ︸
Scenario uncertainty

(13)

Estimating this requires an ensemble of ESMs that each generate multiple runs

over a shared suite of carbon trajectories. The computational costs of this were

prohibitively high until recently, making it difficult to account for internal variability.

However, advances in climate science have increased availability of such ensembles

(See Lehner et al. (2020), among others). Multiple ESMs taking part in the sixth

phase of the Climate Model Intercomparison Project (CMIP6) generate multiple runs

for model-scenario dyads by perturbing the initial conditions. As members of CMIP,

which provides the physical basis in each IPCC assessment, these ESMs produce

comparable outputs using a standard set of greenhouse gas trajectories called Shared

Socioeconomic Pathways (SSP) scenarios (O’Neill et al., 2016).

I collect every ESM run available for CMIP6 on the Pangeo Project, maintained

by the Climate Data Science Lab at Columbia University.5 Restricting my sample

to ESMs that span at least two scenarios and have more than 5 runs per model-

scenario dyad leaves 15 ESMs. I aggregate projections of yearly average temperatures

between 2010 and 2100 from each run spatially to the country level and temporally

to 30-year averages. This is translated into projections of 2100 country-level income

4This methodology is used to partition the three components of climate uncertainty in climate
projections by Lehner and Deser (2023) and in U.S. economic projections by Schwarzwald and
Lenssen (2022) among others. See Yip et al. (2011) for a fuller discussion of the methodology.

5This provides a convenient repository for official CMIP model outputs, which are published by
various research groups.
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after climate damages using the Burke et al. (2015b) damage function and normalized

by the average 2100 income projection from RFFSP. The result is a distribution of

economic damages that represents overall climate uncertainty.

Underlying this distribution are the 7 discrete SSP scenarios standard to CMIP6

models. SSP scenarios were established to provide illustrative trajectories of green-

house gases and are not probabilistic; estimating Equation 13 without weighting the

scenarios would be problematic. 6. I therefore construct weights for each scenario to

reflect their probability by drawing on the Resources for the Future Socioeconomic

Projections (RFFSP) developed by Rennert et al. (2021).

The RFFSPs provide probabilistic projections of carbon flow emissions translated

into concentrations spanning 2020 to 2300.7 I assign the SSP scenario closest to

each RFF trajectory in 2100 concentrations as a first approximation, then use the

frequencies to weight the SSPs in the decomposition.8

6Lehner et al. (2020) notes that averaging projections across all scenarios without assigning
probabilities would not provide a ”best-estimate” projection.

7While the original RFFSP comprises 10,000 equally likely trajectories, I grow the sample to
100,000 using generously provided replication files.

8The sample allows variants of the same model, following the IPCC methodology. I hope to
incorporate Bayesian weights on models with relatively similar provenance as an extension.
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Figure 4: Carbon Concentrations through 2100 in RFFSP

Shading represents minimum and maximum, 1st and 99th percentiles, and 5th and 95th percentiles of carbon concentration levels at
each year. The lines denote standard greenhouse gas scenarios.

Using the ensemble of translated ESM projections and RFFSP scenario weights,

I estimate the expected value of post-climate change income projections and its as-

sociated climate uncertainty. Some nations can expect benefits from climate change,

but most impacts are severely negative; I restrict my sample to the 121 countries

expecting damages. Taking Vietnam as my illustrative case, the expected income in

2100 as a share of the counterfactual income in the absence of climate change is 0.29,

with climate uncertainty at 0.016.

These estimates used a limited sample of climate models in order to account

for internal variability. However, I find that internal variability does not materially

contribute to climate uncertainty around 2100 damages. Continuing with the example

of Vietnam, internal variability comprises 3% of climate uncertainty in contrast to

55% from model uncertainty and 42% from scenario uncertainty. Figure 5 plots the

histogram of the country-level contribution of internal variability. It demonstrates

that internal variability is at most close to 10% and far smaller for most countries. 9

9This is roughly in line with the finding by Schwarzwald and Lenssen (2022) that the contribution
of internal variability to uncertainty in U.S. damage projections to be initially major but becomes
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Figure 5: Internal Variability is Insignificant

Given its limited contribution to climate uncertainty, I move forward with a re-

duced decomposition that omits internal variability. This allows me to include all

models in CMIP6 regardless of the number of runs available, increasing the num-

ber of models to 49. The reduced decomposition estimates climate uncertainty by

partitioning the variance across ensemble means of every model-scenario dyad into

model uncertainty and scenario uncertainty. For models that only have one run, the

ensemble mean is that single run. I estimate Equation 14, weighting the scenarios

using RFFSP as before.

Treduced = E[Vm(Er[x|m, s]|s)]︸ ︷︷ ︸
Model uncertainty

+E[Vs(Er[x|m, s]|m)]︸ ︷︷ ︸
Scenario uncertainty

(14)

I find that omitting internal variability does not significantly change estimates.

The magnitudes are sufficiently similar that I proceed with the reduced decomposition

results as the baseline for the rest of the paper, though estimates for expected post-

climate income and climate uncertainty are both slightly higher for the restricted

less significant by 2100, though estimates are not entirely comparable due to differences in weighting.
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decomposition.

Figure 6: Expected Damages and Climate Uncertainty

Figure 6 plots the resulting expected value of the post-climate change income

against the estimated climate uncertainty for each country in the sample. For the

example of Vietnam, including the full set of CMIP6 models and omitting internal

variability shifts the expected 2100 post-climate damage income to 0.34 of the in-

come in the absence of climate change. The climate uncertainty associated with this

estimate is 0.025, roughly translating to a standard deviation of 0.16.

With the reduced decomposition, climate uncertainty can be partitioned into ei-

ther model or scenario uncertainty. I calculate for each country the relative contribu-

tions of the two components.The histogram of the contribution of scenario uncertainty

in Figure 7 suggests that model uncertainty comprises the greater part of climate un-

certainty for most countries. Even so, scenario uncertainty is not trivial for any

country.
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Figure 7: Scenario Weights Significantly Reduce Scenario Uncertainty

3.2 Quantifying Uncertainty Resolution Speed

Having quantified the current magnitude of climate uncertainty and its compo-

nents, I turn to examining how they evolve. Both scenario and model uncertainty

change over time, but different factors are at play: Mitigation efforts and the accu-

mulation of past emissions drive the path of scenario uncertainty, while the path of

model uncertainty reflects improvements to climate science. Each will affect the evo-

lution of climate uncertainty, which I represent through the sequence of its uncertainty

resolution speed.

Though the path of climate uncertainty resolution speed cannot be directly pro-

jected, it can be constructed by compositing the paths of its components. For each

period t, take Vt to be climate uncertainty with uncertainty resolution speed St, V
s
t

to be scenario uncertainty with resolution speed V s
t , and V m

t to be model uncertainty

with resolution speed Sm
t . Noting that V = V s

t + V m
t and St =

Vt−1−Vt

V0
,

St = Ss
t

V s
0

V0

+ Sm
t

V m
0

V0

(15)
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That is, climate uncertainty resolution speed for period t is the sum of the res-

olution speeds of model and scenario uncertainty, weighted by their relative contri-

butions at time 0. As each component’s relative contribution has been estimated in

the previous section, I proceed to examine the path of uncertainty resolution for each

component.

3.2.1 The Evolution of Scenario Uncertainty

A core assumption of this paper is that the unilateral actions of most individual

countries cannot change the path of global carbon concentrations. Scenario uncer-

tainty, though subject to large-scale mitigation, can be considered exogenous in the

context of the country’s adaptation decision problem. This allows me to estimate the

evolution of scenario uncertainty with RFFSP trajectories of global carbon concen-

trations.

To begin, I define scenario to be the global carbon concentration at our anchor

year of 2100, G2100. Scenario uncertainty in the year 2020 is then represented by the

variance of the full set of RFFSP trajectories V2020(G2100), as shown in Figure 8a.

However, some of those trajectories will be rendered improbable once global carbon

concentration is observed for 2030. Scenario uncertainty in 2030, represented by the

expected value of the variance in feasible 2100 carbon concentrations given the 2030

value E[V2030(G2100|G2030)], is necessarily lower than scenario uncertainty in the year

2020. This is the case for each subsequent decade, as represented in Figure 8b for

2060.
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Figure 8: Decreasing Expected Variance in 2100 Carbon Concentrations

(a) Possible Paths in 2020 (b) Possible Paths in 2060

Note: Each line is a single trajectory of concentrations from RFFSP.

The path of scenario uncertainty in this context is represented by the expectation

of the variance in G2100 across feasible trajectories for each decade.Trajectories are

deemed feasible if they fall within a bandwidth of the observed value. 10 I calculate

the variances of feasible G2100 taking each RFFSP trajectory as the observed path of

carbon concentrations, then take the mean for each decade to calculate the expected

variance. This yields scenario uncertainty at each decade from 2020 to 2090.11 The

scenario uncertainty resolution speed Ss
t for each decade t is then calculated as

Ss
t =

E[Vt(G2100)]− E[Vt−10(G2100)]

V2020(G2100)

Figure 9 plots this path of scenario uncertainty and the corresponding path of

uncertainty resolution speed. Scenario uncertainty in global carbon concentrations

falls slowly for the first decades before declining rapidly by the mid-21st century.

Since scenario uncertainty should not be affected by country-level policy actions, this

path can be taken as given. I proceed to explore the resolution speed for the second

10The bandwidth is currently set to 1 standard deviation of carbon concentration draws at 2020,
reflecting measurement error.

11For simplicity, I assume uncertainty is fully resolved in 2100.
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component, model uncertainty.

Figure 9: Uncertainty & Resolution Speed in 2100 Carbon Concentrations

(a) Scenario Uncertainty (b) Uncertainty Resolution Speed

3.2.2 The Evolution of Model Uncertainty

Unlike scenario uncertainty, the path of model uncertainty can be influenced by

investing in climate research. Projections of climate change given a carbon scenario by

different models are expected to increase in consensus as scientific advances improve

our understanding of the climate system. It may however initially undergo a period

of divergence with the diffusion of new findings. I examine the observed direction

of model uncertainty spanning roughly 2008 to 2020 by approximating the trend of

model uncertainty over two phases of the CMIP.

The earlier phase, CMIP5, began in 2008 to support the fifth IPCC Assessment

Report (Chen et al., 2023).It established four standard greenhouse gas scenarios called

representative concentration pathways (RCP 2.6, 4.5, 6.0, 8.5, with higher numbers

indicating greater warming). Once CMIP6 was launched to provide model outputs

for the sixth IPCC Assessment Report by 2020, it introduced SSP scenarios that

incorporated socioeconomic narratives into the trajectories of greenhouse gases rep-

resented by RCP scenarios. Several SSPs are therefore analogous to RCP; SSP5-8.5
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for example is the CMIP6 counterpart to RCP 8.5.12 Many research institutes par-

ticipated in both CMIP phases, often with updated versions of the same ESM. I

therefore compare model uncertainty in each phase using a sample of scenarios and

models from research institutes that appear in both phases. Table lists the scenarios

and number of models included for each CMIP phase. This methodology is similar

to that used by Jia et al. (2023) used to evaluate climate model performance across

CMIP5 and 6 for China.

Table 1: Number of Models in CMIP5 and CMIP6

Phase 2.6 4.5 6.0 8.5 Models
CMIP6 34 34 7 35 36
CMIP5 25 33 18 35 35

Comparing model uncertainty by scenario across CMIP5 and CMIP6, I find that

the direction of change varies by country. Figure 10a plots the histogram of country-

level differences in model uncertainty from CMIP5 to CMIP6 by scenario. While

many countries see decreases in model uncertainty, a fair number experience increases

in model uncertainty, especially for Scenarios 2.6 and 6.0. Plotting the densities of

estimates for the example of Vietnam in Figure 10b corroborates this pattern. While

the distribution of estimates from CMIP6 all shift left from that of CMIP5, there is

some divergence exhibited in Scenarios 2.6 and 6.0 shows some divergence.

12The greenhouse gas trajectories of both are not identical, but the two are considered comparable.
See IPCC AR6 (Lee et al., 2021)
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Figure 10: Model Uncertainty Change Between CMIP5 and CMIP6

Note: Censored at -0.05.

(a) Histogram of Change by Country (b) Distribution of Estimates, Vietnam

Given its limited data and time coverage, it is perhaps unsurprising that this

exercise provides little information on the expected path of model uncertainty from

present day to 2100. It may be that advances in science lead to initial disagreement

that converges as ideas diffuse. Furthermore, realized model uncertainty may be larger

even as the expectation of model uncertainty decreases. Whatever the cause, I am

unable to estimate an expected path of model uncertainty resolution speed analogous

to that of scenario uncertainty.

3.2.3 The Evolution of Climate Uncertainty

Though the previous exercise did not yield clear evidence of reductions in model

uncertainty, it is probable that model uncertainty will still decrease with improve-

ments in climate science over longer time spans. Climate research funding may then

serve as a policy lever to affect the evolution of climate uncertainty through model

uncertainty. I therefore construct sequences of climate uncertainty resolution speed

for three possible paths of model uncertainty resolution.
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The first path assumes no decrease in model uncertainty; that is, Sm
t = 0 and

model uncertainty will remain constant at the current level present in CMIP6 until

climate damages are realized. The second assumes a linear decrease in model un-

certainty: Sm
t = 1

T
. I composite these two paths of model uncertainty resolution

speed with the estimated path of scenario uncertainty resolution speed, weighting

by the estimated relative contributions of each. To this, I add a sequence of zero

climate uncertainty resolution speed for comparison. Figure 11 plots these sequences

for Vietnam.

Figure 11: Paths of Uncertainty Resolution: Vietnam

The path of model uncertainty resolution speed shapes the overall path because

it comprises a greater part of climate uncertainty. If there is no model uncertainty

resolution over time, the amount of climate uncertainty resolved before 2100 is 25%.

Assuming linear model uncertainty resolution, so that the resolution speed is constant,

results in an intermediate path in which 90% of climate uncertainty is resolved by

2100. These three paths provide illustrative examples for exploring how climate

uncertainty resolution affects optimal investment into climate adaptation.
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4 Implications for Optimal Adaptation

To examine the policy implications of evolving climate uncertainty, I study the

sequence of optimal adaptation investment for each constructed path of climate un-

certainty resolution. The generalized framework in Section 2.2 yielded closed-form

solutions of optimal adaptation investment over T periods. I set the period length

to 10 years, rounding up from the seven or so years between releases of the IPCC

assessment reports. As current estimates are dated to 2020 and the anchor year for

damages is 2100, this results in T = 7 periods to make investments from 2020 to 2090

before damages are realized in period T + 1 = 8, represented by 2100.

Because the optimal levels for future periods depend on the information revealed, I

calibrate the sequence of the expected optimal adaptation E[a] = {a0, E[a1], ..., E[aT ]},

in which

a0 =w0 +

ln(pβ)
r

− w̄ − p
∑7

i=0 wi +
V r
2

[
1−

∑8
k=1

(8−k)p
1+(8−k)p

Sk

]
1 + 8p

E[at] =E[at−1] + wt − wt−1 −
V r

2

St

[1 + (8− t)p]2
∀ t ∈ [1, 7]

according to Equations (11) and (12). Section 3 provides values for the expected

post-climate damage income in 2100, w̄; climate uncertainty, V ; and the path of

climate uncertainty resolution speed S = {S1, S2, ...S8} for each country facing cli-

mate damages in 2100. Investment, income, and post-climate damage income are

all normalized as proportions of the counterfactual level of 2100 GDP per capita in

the absence of climate change.13 I weight the 2100 post-climate change outcome to

persist for a century; that is, β = 10.14 As climate change will continue to worsen

13This implicitly assumes zero population growth.
14This is in lieu of incorporating future discounting.
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past 2100, this serves as an upper bound on utility over the 22nd century.

The coefficient of absolute risk aversion r for CARA utility can be expressed as

r =
Coefficient of Relative Risk Aversion

w̄dam

(16)

I use a coefficient for relative risk aversion of 2 following the literature to calculate

r.15 This can be interpreted as the income the policymaker would be willing to give

up to avoid climate uncertainty around damage, expressed as a proportion of the 2100

income in the absence of climate change.

Ideally, the path of income w = {w0, w1, ...wT} would follow an established pro-

jection. However, doing so exposes a limitation of the generalized framework. The

fundamental tension between the benefits of waiting for uncertainty resolution and

the desire to spread out investment over time is represented through consumption

smoothing with CARA utility. As shown in Equation (12), this results in any in-

creases in income from the previous period being put toward adaptation investment

and income. Lacking alternatives for intertemporal transfers, an increasing path of

income may lead to negative adaptation investment in the earlier periods.

The intuition is not altogether unrealistic. In the case of Vietnam, the average

projected 2100 with climate damages using RFFSP is about two times that of 2020

income. If a nation is expected to be far richer in a few decades, delaying investment

in climate adaptation in favor of other pressing priorities may indeed be optimal.

My framework is however not equipped to evaluate this point, as it precludes the

possibility of climate damages manifesting in earlier periods and abstracts away from

other channels of investment and consumption smoothing. In order to isolate the

effect of uncertainty resolution speed, I therefore proceed with a constant path of

15For calibration, Elminejad et al. (2025) recommend using their corrected mean estimates of 1
for economics and 2–7 for finance.
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income set at the 2100 counterfactual income in the absence of climate change for

periods 0 to 7.

An estimate for the effectiveness of a unit of adaptation, p, is not easily available.

However, the United Nations Environment Programme (2023) aggregates sectoral

costs of climate adaptation to suggest a central estimate of 0.56% of GDP per year

between 2020 and 2030 for developing countries. I therefore calibrate p for each coun-

try with this estimate as the target for the optimal investment in period 0 assuming

no climate uncertainty.

I then generate the sequence of optimal adaptation investment for each country

given the three constructed paths of climate uncertainty resolution speed. The results

indicate that faster uncertainty resolution meaningfully decreases the level of optimal

investment across all periods. Considering first the example of Vietnam, Figure 12

plots the optimal level of investment in each period. The optimal level of initial

investment is calibrated to be 0.56% of 2100 counterfactual income in the path without

any resolution of overall climate uncertainty. The optimal initial investment is slightly

lower given resolution of scenario uncertainty but not model uncertainty, at 0.554% of

2100 counterfactual income. Assuming steady resolution of model uncertainty leads

to the lowest optimal initial investment at 0.537% of 2100 counterfactual income. The

optimal level of investment for subsequent periods decreases more noticeably given

linear model uncertainty resolution.
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Figure 12: Paths of Optimal Adaptation Investment: Vietnam

I find evidence of similar savings across the full sample of countries expecting

climate damages. Figure 13 compares optimal investment for the path of uncertainty

resolution speed without model uncertainty resolution against that of linear model

uncertainty resolution; Panel (a) plots the percentage increase in optimal initial in-

vestment from eliminating model uncertainty resolution, while Panel (b) plots the

percentage increase in the total sum of expected investment. As expected, initial

investment is higher when climate uncertainty resolution is slower. The increase in

optimal level of initial investment without model uncertainty resolution can range

from close to 0% to 7%, but hovers around 2% for the average country. The results

are similar when comparing the expected total investment across the 80-year period.

It must also be noted that the prescriptions of this model are most relevant for earlier

periods before climate signals are accumulated. Overall, faster climate uncertainty

resolution will decrease the optimal level of investment, benefiting nations seeking to

engage in climate adaptation.
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Figure 13: Optimal Investment for Zero vs. Linear Model Uncertainty Resolution

(a) Initial Investment a0 (b) Total Expected Investment

5 Conclusion

Assuming it hastens the resolution of model uncertainty, climate science funding

can reduce unnecessary investment and improve outcomes for nations vulnerable to

climate change. The inverse also holds: Reducing support for research into the effects

of climate change will decrease the benefits of delay, meaningfully increasing the level

of investment optimal for managing climate risk. While we still have time, climate

research itself is a cost-effective investment for the future.
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